miércoles, 20 de abril de 2016

Proteínas: Estructura tridimensional y función

Proteínas: Estructura tridimensional y función



 Las proteínas tienen diversas formas. Muchas son macromoléculas aproximadamente esféricas, hidrosolubles y compactas cuyas cadenas polipeptídicas están dobladas de manera apretada. Esas proteínas globulares tienen un interior hidrofóbico y una superficie hidrofílica, en forma característica. Poseen penetraciones o fisuras que reconocen en forma específica a otros compuestos y se unen a ellos en forma transitoria. Al enlazarse selectivamente con otras moléculas, dichas proteínas sirven como agentes dinámicos de la acción biológica. Varias proteínas globulares son enzimas, los catalizadores bioquímicos de las células. Más o menos 31% de los polipéptidos en la E. coli se consideran enzimas metabólicas, como las que se describirán en los siguientes capítulos. Hay otros tipos de proteínas globulares que incluyen diversos factores, proteínas portadoras y proteínas reguladoras; el 12% de las proteínas conocidas en la E. coli caen en estas categorías. También los polipéptidos pueden ser partes de grandes estructuras subcelulares o extracelulares, como ribosomas, flagelos y cilios, músculos y cromatina.
 Las proteínas fibrosas son una clase particular de proteínas estructurales que proporcionan soporte mecánico a las células u organismos. En el caso típico, las proteínas fibrosas se ensamblan en grandes cables o hebras. Como ejemplos de proteínas fibrosas están la a-queratina, el componente principal de cabello y uñas, y la colágena, el componente proteínico.

 Los cuatro niveles de estructura de las proteínas

la estructura primaria describe la secuencia lineal de residuos de aminoácidos en una proteína. Recuérdese que las secuencias de aminoácidos siempre se escriben desde el amino terminal (N-terminal) hasta el carboxilo terminal C- (C-terminal). La estructura tridimensional de una proteína se describe con tres niveles adicionales: estructura secundaria, estructura terciaria y estructura cuaternaria. Las fuerzas que mantienen, o estabilizan, estos tres niveles son no covalentes, de manera primordial. La estructura secundaria se refiere a las regularidades en las conformaciones locales mantenidas por puentes de hidrógeno entre los hidrógenos de amida y los oxígenos de carbonilo en la columna vertebral del péptido. Las estructuras secundarias principales son las hélices a y las hebras b. La estructura terciaria describe la cadena polipeptídica totalmente plegada y compactada. Muchos polipéptidos plegados consisten en varias unidades distintas unidas por un tramo corto de residuos de aminoácidos,  dichas unidades se les conoce como dominios. Las estructuras terciarias se estabilizan por las interacciones de cadenas laterales de aminoácidos en regiones no vecinas de la cadena polipeptídica. La formación de la estructura terciaria acerca partes lejanas de las estructuras primaria y secundaria. Algunas proteínas poseen estructura cuaternaria, que implica la asociación de dos o más cadenas polipeptídica en una multisubunidad, o proteína oligomérica u oligómera. Las cadenas polipeptídicas de una proteína oligómera pueden ser idénticas o distintas.



 Métodos para determinar la estructura de las proteínas

Como se estudió en el capítulo 3, la secuencia de aminoácidos en los polipéptidos (es decir, la estructura primaria) se puede determinar por métodos químicos, como la degradación de Edman, o en forma indirecta, a partir de la secuencia del gen. La técnica acostumbrada para determinar la conformación tridimensional de una proteína es la cristalografía con rayos X. En esta técnica se apunta un haz de rayos X colimados, o paralelos, a un cristal de moléculas de proteína. Los electrones en el cristal difractan los rayos X, que se registran entonces en una película, o mediante un detector electrónico. El análisis matemático de la figura de difracción produce una imagen de las nubes de electrones que rodean a los átomos en el cristal. Este mapa de densidad electrónica revela la forma general de la molécula y las posiciones de cada uno de los átomos en el espacio tridimensional. Al combinar esos datos con los principios del enlazamiento químico es posible deducir el lugar de todos los enlaces en una molécula y en consecuencia su estructura general. La técnica de cristalografía con rayos X se ha desarrollado hasta el punto en que es posible determinar la estructura de una proteína sin tener un conocimiento preciso de la secuencia de aminoácidos. En la práctica ese conocimiento facilita mucho el ajuste del mapa de densidad electrónica en la etapa en la que se determinan los enlaces químicos entre los átomos.




No hay comentarios.:

Publicar un comentario